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Aminoglycoside Resistance in Gram-negative Bacilli
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Aminoglycosides are one of the clinically relevant 
antibiotics. They kill bacteria by binding to bacterial 
30S subunit of ribosome. Resistance to aminoglyco-
sides occurs by three different mechanisms: 1. Pro-
duction of an enzyme that modifies aminoglycosides, 
2. Impaired entry of aminoglycoside into the cell by 
altering the OMP permeability, decreasing inner mem-
brane transport, or active efflux, 3. The receptor pro-
tein on the 30S ribosomal subunit may be deleted or 

altered as a result of a mutation. By far, enzymatic 
modification has been the most important mecha-
nism. In this review, the mechanisms of action and 
resistance, and the prevalence of resistance due to 
acquisition of enzymes are briefly described. (Korean 
J Clin Microbiol 2009;12:57-61)
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The aminoglycosides/aminocyclitol antibiotics are charac-
terized by two or more amino sugars linked by a glycosidic 
bond to the aminocyclitol (hexose) ring, which is either strepti-
dine (found in streptomycin) or 2-deoxystreptamine (found in 
other aminoglycosides) (Fig. 1)[1]. The latter is again classified 
as 4,5-disubstituted and 4,6-disubstituted. The examples of 
4,5-disubstituted are neomycin and paromomycin. Most of other 
aminoglycosides are 4,6-disubstituted. These are basic, strongly 
polar compounds that are positively charged (cationic). 
  Because of their positive charge, they are able to bind neg-
atively charged lipopolysaccharide of the bacterial cell wall and 
a variety of molecules such as DNA, RNA, and phospholipids.
  The primary mechanism of action of aminoglycosides is a de-
crease in protein synthesis after the drug has bound to the bacte-
rial 30S subunit of the ribosome. Their polycationic nature al-
lows binding to the polyanionic 16S rRNA on the 30S ribosome 
at the A site (site of codon and anticodon recognition) for tRNA 
binding. The aminoglycoside-bound bacterial ribosomes then be-
come unavailable for translation of mRNA during protein syn-
thesis, thereby leading to cell death. To reach the intracellular 
ribosomal binding targets, the initial event is passive diffusion 
via porin channels across the outer membrane. Drug is then ac-
tively transported across the cell membrane into the cytoplasm 

by an oxygen-dependent process. Transport may be enhanced by 
cell wall-active drugs such as penicillin or vancomycin: This en-
hancement maybe the basis of the synergism of these antibiotics 
with aminoglycosides[2].
  Resistance to aminoglycosides occurs by three different mech-
anisms: 1. Production of a enzyme that modifies aminoglyco-
sides (aminoglycoside modifying enzymes, AMEs) 2. Impaired 
entry of aminoglycoside into the cell by altering the OMP per-
meability, decreasing inner membrane transport, or active efflux 
3. The receptor protein on the 30S ribosomal subunit may be 
deleted or altered as a result of a mutation. By far, enzymatic 
modification is (has been) the most important mechanism. These 
enzymes are assigned to three groups: (a) acetyltransferases 
(acetylation of an aminogroup-AAC), (b) phosphotransferases 
(phosphorylationof a hydroxyl group-APH) and (c) adenyl-
transferases (adenylation of a hydroxyl group-AAD or ANT). 
These AMEs are often plasmid encoded but are also associated 
with transposable elements. Sites of AME modification of ami-
noglycosides are identified by a standard numbering system. 
The first sugar moiety at the 4 position has positions numbered 
with a single prime (1' to 6'); the second sugar moiety at the 
6 position has positions numbered with a double prime (1'' to 
6'') (Fig. 2)[1,3].
  Aminoglycoside resistance mechanisms can be ascertained by 
examining the susceptibility of the strains to a panel of amino-
glycosides (phenotypic characterization) (Table 1)[4]. However, 
in case of harboring more than two enzymes, the phenotype will 
not match any one of them.
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Fig. 2. Aminoglycoside-modifying en-
zymes and their substrates. A, amika-
cin; Dbk, dibekacin; G, gentamicin; 
Gmb, gentamicin B; I, isepamicin; K, 
kanamycin A; N, netilmicin; S, siso-
micin; T, tobramycin.

Fig. 1. Backbone structures of the aminoglycosides.

  This enzyme is important because it confers resistance to ami-
kacin, netilmicin, kanamycin, and tobramycin and its gene is lo-
cated within integrons and transposons[5,6]. 
  In Korean isolates of AmpC-producing Enterobacteriaceae, 
the prevalence of aac(6')-Ib was 41.3%, 18.7%, and 6.6%, re-
spectively in Enterobacter cloacae, Citrobacter freundii and 
Serratia marcescens[6]. Interestingly, of the aac(6')-Ib or 
aac(6')-Ib-cr harboring isolates, only about only 25∼30% were 
nonsusceptible to amikacin[6,7] and this finding needs further 
investigation. Moreoever, the fact that AAC(6')-I coexists very 
frequently with other antibiotic-inactivating enzymes such as β- 
lactamases, carbapenemases or other aminoglycosidases alarms 
us[7].
  For P. aeruginosa, Miller et al.[8] brought together several 
studies carried out worldwide. Results showed that in Europe, 
between 1988 and 1993, aac(6')-II was the most prevalent (2.1

∼70.3%, avr. 32.5%), followed by ant(2'')-I (1.7∼45.2%, avr. 
16.9%), and non-enzymatic resistance (4.3∼23.7%, average of 
14.0%). In a study conducted with P. aeruginosa isolates show-
ing high-level resistance to gentamicin and netilmicin and 
strains presenting a low-level resistance to all aminoglycosides 
including apramycin, collected in 2000 from community and 
private healthcare centers[9], the predominance of the three en-
zymes (aac(6')-Ib, ant(2'')-Ia, aac(3)-IIc) was observed (36.5%, 
21.2%, and 7.7%, respectively), and the non-enzymatic resist-
ance was 34.6%. In addition, the presence of aac(6')-Ib, which 
acetylates kanamycin, tobramycin, netilmicin, amikacin (KTNA), 
but not gentamicin, was regularly associated with a decreased 
gentamicin susceptibility. And it was assigned to the amino acid 
sequence at position 119, a leucine being associated with amika-
cin resistance and a serine with gentamicin resistance.
  In Korean nationwide study, of the 250 isolates of P. aerugi-
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Table 1. Phenotypic characteristics of isolates producing aminoglycoside modifying enzymes (cited from EUCAST expert rules in anti-
microbial susceptibility testing)

Phenotype Enzyme St Sp K A G Nt T Nm

St APH(3’’) R S S S S S S S
St Sp ANT(3’’)(9) R R S S S S S S

G AAC(3)-I S S S S R s/r s/r S

K APH(3’)-I S S R S S S S R

K A APH(3’)-VI S S R R S S S R

G T AAC(3)-VI* S S S S R s/r R S

T K A ANT(4’)-II S S R R S S R S

G T Nt Nm AAC(2’)-I
AAC(3)-IV S S S S R R R R

K G T ANT(2’’)-I S S R S R S r S

K T A Nt AAC(6’)-I S S R r S R R S

K T G Nt AAC(3)-II S S R S R R R S

K T G A Nt Impermeability±different enzymes R R R R R R R R

*AAC(3)-IIa.
Abbreviations: S, streptomycin; Sp, spectinomycin; K, kanamycin; A, amikacin; G, gentamicin; Nt, netilmicin; T, tobramycin; Nm, neomycin; 
APH, aminoglycoside phosphotransferase; ANT, aminoglycoside nucleotidyltransferase; AAC, aminoglycoside acetyltransferase; R, resistance; r,
reduced zones but likely to remain susceptible at BSAC breakpoints; S, susceptible.

nosa collected in 2002, the amikacin resistance rate was 22% 
(55 isolates), and of them, aph(3')-VI, ant(2'')-I, and aac(6')-I 
were found in 37, 32, and 18 isolates, respectively, alone or in 
combination[10]. Thirty-six strains harboured two or more types 
of enzymes, of which a combination of aac(6')-I and ant(2'')-I 
was the most frequent (24/36 isolates). The association with 
class 1 integron was confirmed with all of the ant(2'')-I, 6 of 18 
aac(6')-I, but none of the aph(3')-VI. The difference in the en-
zyme distribution might be derived from the difference in se-
lection of bacterial population and aminoglycoside usage. 
  More recently, 16S rRNA methylases (RmtA, RmtB, RmtC, 
RmtD, ArmA and NpmA) conferring resistance to almost all ami-
noglycosides, including arbekacin, has emerged and dissemi-
nated via mobile elements. Of these, armA gene has been found 
to be widely disseminated among various species[11], and was 
found on a large plasmid which carries a type 1 integron that 
mediates various gene cassettes responsible for multiple anti-
microbial resistance[12]. In Korean isolates of Enterobacteriacae 
collected between 1995 and 1998 and between 2001 and 2006 
at a university hospital, armA was first appeared in 1997[13]. 
Among the E. cloacae, C. freundii, and S. marcescens collected 
in 2003, amikacin resistance rate was 9.5%, 10.3% and 17.1%, 
respectively. About 84.5% of the amikacin-resistant isolates 
showed high-level (MIC＞512μg/mL), and almost all of them 

harboured armA gene[14]. Among arbekacin or amikacin-non-
susceptible K. pneumoniae and A. baumannii, 53.8% and 53.3% 
harbored armA, respectively, and most armA-harboring A. bau-
mannii were nonsusceptible to carbapenem[15].
  rmtA gene is likely associated with the mercury-resistant 
transposon Tn5041[16]; the rmtB gene was found in the flank-
ing region of Tn3-like structure[17]. The rmtC was located 
downstream of an ISEcpI-like element containing tnpA[18].  
NpmA is unique in that it gives resistance to apramycin and neo-
mycin, due to methylation of the A1408 position at the A site 
of 16S rRNA; all other 16S rRNA methylases methylate the 
G1405 position[19].
  Aminoglycosides is also the substrates for a number of multi-
drug efflux pumps, including the resistance nodulation cell divi-
sion (RND) transporter superfamily, which plays an important 
role in Gram-negative bacteria. Several RND proteins are in-
volved in aminoglycoside resistance in various Gram-negative 
pathogens, including P. aeruginosa, Burkholderia pseudomallei, 
Acinetobacter baumannii, and E. coli[20].
  Despite these various resistance mechanisms, aminoglycosides 
are still valuable weapons in antimicrobial treatment, partic-
ularly in the treatment of serious Gram-negative nosocomial in-
fections[5]. To use the aminoglycosides properly, accurate de-
tection of resistance and efforts to prevent the spread of resistant 
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isolates are required.
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=국문초록=

그람음성 세균에서의 Aminoglycoside 내성

가톨릭대학교 의과대학 서울성모병원 진단검사의학교실

박연준

Aminoglycoside는 임상적으로 유용한 항균제 중 하나로, 세균의 리보솜의 30S subunit에 결합함으로써 살균 작용을 보인

다. 이 약제에 대한 내성은 세 가지 기전에 의해 일어난다. 첫째는 aminoglycoside를 불활화시키는 효소의 생성이고, 둘째

는 세균의 세포외막 투과성의 변화, 능동적 유출에 의해 약제가 세균 세포 내로 이동하지 못하게 되는 기전이며, 셋째는 

리보솜 단백질의 변화이다. 현재까지는 효소에 의한 내성이 가장 흔하다. 본 종설에서는 aminoglycoside의 작용 및 내성 

기전, aminoglycoside 불활화 효소에 의한 내성의 빈도 등에 대해 간략히 살펴보았다. [대한임상미생물학회지 2009;12: 

57-61]
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