Antimicrobial Resistance and Multilocus Sequence Typing of Vancomycin-Resistant *Enterococcus faecium* Isolated from the Chungcheong Area

Hye Hyun Cho¹, Ji Youn Sung², Kye Chul Kwon¹, Jin Sook Lim¹, Sun Hoe Koo¹

¹Department of Laboratory Medicine, College of Medicine, Chungnam National University, Daejeon, ²Department of Biomedical Laboratory Science, Far East University, Eumseong, Korea

Background: Enterococcus faecium has emerged as an important nosocomial pathogen worldwide, and this trend has been associated with the dissemination of a genetic lineage designated clonal complex 17 (CC17). In the present study, characterization of the glycopeptide resistance mechanism, genetic relatedness, and pathogenicity in isolates of vancomycin-resistant E. faecium in the Chungcheong area were investigated. Methods: A total of 37 consecutive, non-duplicate, vancomycin-resistant E. faecium were isolated at three university hospitals in the Chungcheong area. The mechanism of glycopeptide resistance and pathogenicity factors were studied using PCR, and the genetic relatedness was determined via multilocus sequence type and esp repeat profile analysis. Additionally, the quinolone resistance-determining regions of parC and gyrA were sequenced to identify mutations involved in ciprofloxacin resistance.

Results: Two genotypes of VRE were confirmed: VanA-

INTRODUCTION

Vancomycin-resistant enterococci (VRE) were isolated in Europe for the first time in 1986. Since then, they have been spread around the world and became an important nosocomial pathogen [1]. In Korea, VRE were first reported in 1992 and the number of isolates was limited so far. But with increasing use of oral vancomycin, detection rate of VRE has been tremendously increased since 1998 [2]. According to the survey by Korean National Surveillance Antimicrobial Resistance (KONSAR), vancomycin resistance rate of *Enterococcus faecium* isolated in domestic hospitals was reported as 16% in 2004 [3].

phenotype vanA genotype VRE (25 isolates) and VanB-phenotype vanA genotype VRE (12 isolates). MLST analysis revealed five sequence types. A significant result was that ST414 and CNS4 (4-1-1-1-1-1) were considered as belonging to CC17. The esp and hyl genes were found in 100% and 86.4% of the isolates, respectively. A total of 37 isolates showed genetic mutations in parC and gyrA. Conclusion: All isolated strains in the present study belonged to one of the CC17 genotypes including ST414 and CNS4 (4-1-1-1-1-1), which were not previously detected in Korea. The combination of MLST and the esp gene repeat profiles can be useful for genetic characterization of VREF isolates with regard to the evolutionary process and epidemiology of the clones. (Korean J Clin Microbiol 2011;14:60-66)

Key Words: Vancomycin-resistant *E. faecium*, MLST, Clonal complex 17

Recently VRE which are high-resistant to ampicillin, aminoglycoside and glycopeptide are prevalent. Among those, clonal complex 17 (CC17) adapting to prolonged exposure to hospital setting is detected worldwide. The characteristics of CC17 are its resistance to ampicillin and quinolone, and variant *esp* gene as *E. faecium* pathogenicity island (PAI) [4,5]. It has been reported that the organisms isolated in Korea belong to CC17 [6,7]. Thus study on epidemiology and genetic characteristics of CC17 is needed. For this purpose multilocus sequence typing (MLST) is designed for tracing the origin of prevalent organisms or phylogeny of each organism. MLST can give an accurate prediction about epidemiologic origin and evolutional background of same organism without errors between interpreters and laboratories.

In this study, resistance to antibiotics and the mechanism of resistance were investigated on 37 isolates of vancomycin-resistant *Enterococcus faecium* (VREF) collected in 3 university hospitals in Chungcheong area. And epidemiologic study on *esp* and *hyl* regarded as pathogenic genes was performed with

Received 6 September, 2010, Revised 29 December, 2010 Accepted 29 December, 2010

Correspondence: Sun Hoe Koo, Department of Laboratory Medicine, Chungnam National University Hospital, 640 Daesa-dong, Jung-gu, Daejeon 301-721, Korea. (Tel) 82-42-280-7798, (Fax) 82-42-257-5365, (E-mail) shkoo@cnu.ac.kr

MLST. In addition, mutations of quinolone resistance determining region (QRDR) involved in resistance of CC17 to quinolone and the association between genetic alteration and resistance to antibiotics were studied.

MATERIALS AND METHODS

1. Bacterial strains and susceptibility tests

Between September and December of 2009, a total of 37 consecutive, non-duplicate, VREF were isolated at three university hospitals located in Chungcheong area of Korea. The isolates were confirmed to be *E. faecium* by biochemical profiling using conventional methods and Vitek 2 identification system (BioMérieux, Hazelwood, MO, USA).

Antimicrobial susceptibilities were determined by the disk diffusion technique in accordance with the guidelines established by the Clinical and Laboratory Standards Institute (CLSI) [8]. The following antibiotics were tested: ampicillin, vancomycin, teicoplanin, erythromycin, tetracycline, levofloxacin, norfloxacin, ciprofloxacin, nitrofurantoin, quinupristin-dalfopristin, and linezolid (BBL, Cockeysville, MD, USA). MICs were determined by the CLSI agar dilution method. Antibiotics were obtained as follows: vancomycin, teicoplanin, ampicilin from Sigma-Aldrich (St. Louis, MO, USA), ciprofloxacin from Fluka (Buchs, Switzerland). *E. faecium* BM4147 used as a control strain.

2. Detection of vanA and vanB genes

All vancomycin-resistant E. faecium isolates were subjects to PCR assays for the detection of vanA and vanB genes. PCR was conducted with 50 ng of template DNA (genomic DNA), $2.5 \,\mu$ L of 10×Taq buffer, 0.5 µL of 10 mM dNTP mix, 20 pmol of each primer, and 0.7 U of Tag DNA polymerase (Solgent, Daejeon, Korea) in a total volume of $25 \,\mu$ L. Primers for the detection of vanA and vanB gene were utilized as follows: vanA-F (5'-GGGAAAACGACAATTGC-3') and vanA-R (5'-GTACAA-TGCGGCCGTTA-3') and vanB-F (5'-ATGGGAAGCCGATA-GTC-3') and vanB-R (5'-GATTTCGTTCCTCGACC-3') [9]. All of the vanA and vanB genes were amplified via the pre-denaturation of the reaction mixture for 4 min at 95°C; this was followed by 30 cycles at 94°C for 1 min, 45°C for 45 sec, and 72° C for 1 min, and a final elongation for 7 min at 72° C; these reactions were conducted in a GeneAmp PCR System 9600 (Perkin-Elmer Cetus Corp., Norwalk, CT, USA). The amplified products were separated via electrophoresis on 1% agarose gels containing ethidium bromide, and visualized using a BioDoc-14 Imaging system (UVP, Cambridge, UK). The amplicons were purified with a PCR purification kit (Solgent) and were sequenced using a BigDye Terminator Cycle Sequencing Kit (PE Applied Biosystems, Foster City, CA, USA) and an ABI PRISM 3730XL DNA analyzer (PE Applied Biosystems).

3. MLST

MLST was performed according to the scheme described previously [10]. Internal fragments of seven housekeeping genes (*adk, atpA, ddl, gdh, gyd, purK* and *pstS*) were amplified by PCR and directly sequenced. The allele number for each gene assigned based on the *E. faecium* MLST database (http://www. mlst.net). The combination of the allelic sequences for the seven genes yielded the allelic profile for each isolate.

4. Detection of the esp and hyl genes

The presence of the *esp* and *hyl* gene in isolates was determined by PCR using primers; *esp*-F (5'-GGTCACAAAGC-CCAACTTGT-3') and *esp*-R (5'-ACGTCGAAAGTTCGATT-TCC-3') [6] and *hyl*-F (5'-ACAGAAGAGCTGCAGGAAATG-3') and *hyl*-R (5'-GACTGACGTCCAAGTTTCCAA-3') [11]. To determine repeat number variations of *esp* A and C repeats, two different primer combinations were used; *esp*fs7F (5'-CGACCGATTTAGCAGTAAC-3') - *esp*fm5R (5'-CAGCTGC-GCTAACATCTAC-3') and *esp*fm5F (5'-AAAGAAGATTTA-CCAAAAGATACTAAG-3') - *esp*fs3R (5'-TTCGGCGCTTTT-TATC-3') respectively [12]. All PCR conditions were similar to those for MLST. PCR products were confirmed by sequencing.

5. Sequencing the QRDRs of parC and gyrA

The QRDRs of the *E. faecium parC* and *gyrA* genes were amplified and sequenced.

Primers for the detection of *parC* and *gyrA* gene were utilized as follows: *parC*-F (5'-TTCCCGTGCATTTCGATCAGTACT-TC-3') and *parC*-R (5'-CGTATGACAAAGGATTCGGTAAA-TC-3') and *gyrA*-F (CGGGATGAACGAATTGGGTGTGA-3') and *gyrA*-R (5'-AATTTTACTCATACGTGCTTCGG-3') [13]. PCR conditions included an initial denaturation at 95°C for 15 min, followed by 30 cycles of 94°C for 30 sec, 52°C for 30 sec, and 72°C for 1 min, followed by an extension at 72°C for 7 min.

RESULTS

1. The pattern of antibiotic resistance

A total of 37 isolates of VREF were isolated from patients' specimens. All isolates showed resistance to vancomycin and ampicillin by agar dilution method. And those isolates also showed relatively high resistance to ciprofloxacin (97.3%) and teicoplanin (67.7%) (Table 1).

2. Determination of VRE genotype

PCR was performed on those 37 isolates to determine the *van* gene genotype. They were all positive for *vanA* type. But there were no detected isolates when using PCR to detect *vanB* type. Direct sequencing for those isolates confirmed the PCR results. After analyzing the pattern of antibiotic resistance and VRE genotype, we found 2 genotypes of VRE. One was VanA-phenotype *vanA* genotype VRE (25 isolates) and the other was VanB-phenotype *vanA* genotype VRE (12 isolates).

3. MLST analysis

The most common form of those 5 STs was ST192 (20 isolates) according to MLST analysis on VREF isolates. The other

Isolates -	MIC (µg/mL)							
Isolates	Ampicillin	Vancomycin	Teicoplanin	Ciprofloxacin				
CNS3	>256	>256	16	64				
CNS4	>256	>256	16	64				
CNS5	>256	>256	128	256				
CNS6	>256	>256	32	32				
CNS8	256	>256	8	64				
CNS9	>256	>256	128	256				
CNS10	>256	>256	256	16				
CNS11	>256	>256	8	32				
CNS12	>256	>256	8	32				
CNS13	256	>256	256	256				
CNS14	256	>256	16	256				
CNS15	256	>256	64	64				
CNS16	>256	>256	64	32				
CNS17	>256	>256	64	256				
CNS18	>256	>256	64	64				
CNS19	>256	>256	64	32				
CNS20	>256	>256	256	64				
CNS22	>256	>256	8	256				
CNS23	>256	>256	128	64				
CNS24	>256	>256	128	256				
CNS25	>256	>256	128	2				
CNS27	>256	>256	128	64				
CBS2	>256	>256	128	128				
CBS3	>256	>256	64	256				
CBS6	>256	>256	128	256				
CBS7	>256	>256	128	64				
CBS8	>256	>256	128	256				
CBS9	>256	>256	16	128				
CBS11	>256	>256	128	256				
CBS12	>256	>256	128	256				
CBS14	>256	>256	64	128				
EJS1	>256	>256	16	128				
EJS2	>256	>256	256	128				
EJS3	>256	>256	8	128				
EJS4	>256	>256	64	128				
EJS5	>256	>256	8	128				
EJS7	256	>256	16	128				

Table 1. Antibiotic susceptibility profiles of VREFs

forms were ST78 (12 isolates), ST17 (3 isolates), ST414 (1 isolate), and CNS4 (4-1-1-1-1) (1 isolate) in order of frequency (Table 2).

4. Detection of pathogenic factors (esp and hyl gene)

PCR was performed on 37 isolates to detect pathogenic genes, *esp* and *hyl*. All 37 isolates showed positivity for *esp* gene and 32 (86.4%) of 37 isolates for *hyl* gene. Direct sequencing of amplified *esp* and *hyl* gene products by PCR validated the sequence of the *esp* and *hyl* gene.

In addition, three different forms were noticed according to *esp* repeat profile analysis for 5 STs, 36 of 37 isolates had 2 forms and 1 isolate showed a different form (Table 2).

5. Sequencing of parC and gyrA gene

We also investigated mutations of *parC* and *gyrA* existing in QRDR. All 37 isolates had mutations in *parC* and *gyrA*. In case of *parC*, 26 isolates had Ser80 \rightarrow Arg and 11 isolates had Ser80 \rightarrow Ile mutation. In case of *gyrA*, 19 isolates showed Ser83 \rightarrow Arg and 18 isolates showed Ser83 \rightarrow Ile mutation. 17 of 37 isolates (45.9%) had both Ser80 \rightarrow Arg and Ser83 \rightarrow Arg mutations in *parC* and *gyrA*. In addition, 9 isolates (24.3%) had Ser80 \rightarrow Arg and Ser83 \rightarrow Ile and Ser83 \rightarrow Arg, and 9 isolates (24.3%) had Ser80 \rightarrow Ile and Ser83 \rightarrow Ile (Table 3).

DISCUSSION

Even many articles about the mechanism of VRE resistance and its epidemiology have been published in Korea so far [2,3,6,7,14], but such studies in Chungcheong area has not been reported. VREs are classified into 6 categories depending on amino acid sequence of ligase. Among those, VanA and VanB have been frequently reported [15,16]. In general, VanA type E. faecium shows high resistance to vancomycin and teicoplanin. VanB type has low resistance to vancomycin and susceptibility to teicoplanin. But the presence of isolates with vanA which also has VanB phenotype was reported. The point mutation of sensor domain of vanS and damage to VanY and VanZ which are accessory proteins are reasons for this phenomenon and consequent susceptibility to teicoplanin [14,17]. Eom et al. reported 20 patients infected with VanB phenotype vanA genotype E. faecium in one hospital in 2001, which was the first case in Korea [14]. In this study, all 37 VRE isolates had vanA but no vanB. Antibiotic susceptibility testing revealed that 25 isolates (67.6%) were VanA-phenotype vanA genotype VRE which are resistant to vancomycin and teicoplanin and 12 isolates (32.4%) were VanB-phenotype vanA genotype VRE which are susceptible to teicoplanin. As a result, it was concluded that VanB-phenotype vanA genotype VRE are relatively common in this study.

MLST for molecular epidemiologic study on VRE isolates is a method to analyze the genetic diversity of multiple housekeeping genes. After analyzing MLST of VREFs isolated from 3 hospitals, we found total 5 sequence types. Among those ST192, ST78, ST17 were prevalent and ST414 (15-5-1-1-1-20-1) and CNS4 (4-1-1-1-1-1) existed in each different hospitals. Studies on VRE isolated in Korea showed 14 STs (ST32, ST78, ST203, ST17, ST117, ST205, ST18, ST192, ST204, ST206, ST207, ST64, ST132, ST233) in total [6,7,18]. Taking this study into consideration, ST414 found in our study is the first ST reported in Korea. In E. faecium MLST database (http://www.mlst.net), a total of 514 STs have been reported so far. ST414 was the first case reported in Australia in 2008 [19]. And CNS4 (4-1-1-1-1-1) which was never reported until now is expected to be new to MLST database. The most common form of STs in Korea is known to be ST78 [20]. But in this

Abbreviations: CNS, isolates from CN hospital; CBS, isolates from CB hospital; EJS, isolates from EJ hospital.

STRAIN	ST	Allelic profile							<i>esp</i> gene repeat profile		hyl
		atpA	ddl	gdh	purK	gyd	pstS	adk	esp-A	esp-C	
CNS3	78	15	1	1	1	1	1	1	4	8	+
CNS4	New	4	1	1	1	1	1	1	4	8	+
CNS5	192	15	1	1	1	1	7	1	4	8	+
CNS6	78	15	1	1	1	1	1	1	5	6	+
CNS8	192	15	1	1	1	1	7	1	5	6	+
CNS9	78	15	1	1	1	1	1	1	4	8	+
CNS10	78	15	1	1	1	1	1	1	5	6	+
CNS11	192	15	1	1	1	1	7	1	5	6	+
CNS12	192	15	1	1	1	1	7	1	4	8	+
CNS13	78	15	1	1	1	1	1	1	5	6	+
CNS14	192	15	1	1	1	1	7	1	4	8	+
CNS15	192	15	1	1	1	1	7	1	5	6	+
CNS16	192	15	1	1	1	1	7	1	4	8	_
CNS17	78	15	1	1	1	1	1	1	4	8	+
CNS18	192	15	1	1	1	1	7	1	5	6	+
CNS19	192	15	1	1	1	1	7	1	5	6	+
CNS20	78	15	1	1	1	1	1	1	5	6	+
CNS22	192	15	1	1	1	1	7	1	4	8	+
CNS23	192	15	1	1	1	1	7	1	5	6	+
CNS24	192	15	1	1	1	1	7	1	4	8	+
CNS25	192	15	1	1	1	1	7	1	4	8	+
CNS27	17	1	1	1	1	1	1	1	4	8	+
CBS2	17	1	1	1	1	1	1	1	4	8	+
CBS3	78	15	1	1	1	1	1	1	5	6	_
CBS6	78	15	1	1	1	1	1	1	4	8	_
CBS7	192	15	1	1	1	1	7	1	5	6	+
CBS8	192	15	1	1	1	1	7	1	4	8	+
CBS9	414	15	5	1	1	1	20	1	4	8	_
CBS11	192	15	1	1	1	1	7	1	4	8	+
CBS12	192	15	1	1	1	1	7	1	4	8	+
CBS14	78	15	1	1	1	1	1	1	5	6	+
EJS1	192	15	1	1	1	1	7	1	5	6	+
EJS2	192	15	1	1	1	1	7	1	5	6	+
EJS3	78	15	1	1	1	1	1	1	6	7	+
EJS4	78	15	1	1	1	1	1	1	4	8	_
EJS5	192	15	1	1	1	1	7	1	5	6	+
EJS7	17	1	1	1	1	1	1	1	4	8	+

Table 2. Genotypic characteristics of vancomycin-resistant *E. faecium* isolates from three Korean hospitals based on multilocus sequence typing, *esp* repeat profiles and *hyl* gene

Abbreviations: CNS, isolates from CN hospital; CBS, isolates from CB hospital; EJS, isolates from EJ hospital.

Table 3. parC and gyrA mutation in 37 E. faecium isolates corresponding to ciprofloxacin MIC

Amino acid mutation in gene		No. of isolates with ciprofloxacin MIC (μ g/mL)							Total no. of islates	
parC (80)	gyrA (83)	2	4	8	16	32	64	128	256	37
R	R				1	3	6	4	3	17
R	Ι					2	2	1	4	9
Ι	R							1	1	2
Ι	Ι	1					1	3	4	9

Abbreviations: R, arginine; I, isoleucine.

study, ST192 was the most common form constituting 54%. And ST203 and ST205 commonly distributed in Korea, were not present in this study.

ST192, ST78, ST17 commonly distributed over 3 hospitals and ST414, CNS4 (4-1-1-1-1-1) found in this study belonged to CC17. CC17 spreading around the world has resistance to ampicillin and quinolone, presence of putative pathogenicity island including esp gene, and putative virulence gene hyl gene. Esp gene, one of main pathogenic factors of E. faecium, is a surface protein acting as adhesion factor and is involved in biofilm synthesis [21,22]. In addition, the fact that it can be transmitted with vanA resistance gene is believed to make contribution to wide spread of pathogenic VRE [23]. Currently there have been many reports about another pathogenic gene, hvl gene in addition to esp gene [24-26]. Hvl gene is translated into hyaluronidase protein acting as a pathogenic factor in Streptococcus pyogenens, Staphylococcus aureus, and Streptococcus pneumoniae [26], and commonly found in spreading disease causing organisms [11]. Especially in recent study in Spain E. faecium with hyl gene was reported to belong to CC17 polyclonal subcluster, which proved the relationship between CC17 and hyl gene [24]. In this study, it was found all 37 isolates had esp gene, and most of isolates (32 isolates, 86.5%) except 5 (CNS16, CBS3, CBS6, CBS9, EJS4) had hvl gene. Camargo et al. [27] reported 56.5% of VREFs (13/23) isolated in Brazil had esp gene, 17.3% (4/23) had both hyl gene and esp gene. And Saudi Arabian study in 2008 showed 30 of 33 isolates of CC17 has either esp gene or hyl gene and concluded that 91% of CC17 isolates had pathogenic factors [11].

Esp repeat profile analysis along with PFGE or MLST is used for analyzing outbreaks of VREF resistance gene [26]. Recent report in Holland in 2004 about *esp* repeat profile analysis on isolates coming from single outbreak showed same results [12]. And also it was reported that MLST with *esp* repeat profile analysis could increase the genetic diversity of VREF isolates in recent study in Korea. For example, ST78 isolates from MLST can be reclassified into 8 subgroups according to *esp* repeat profile analysis. Consequently it was possible to determine genotype of spreading pathogenic VREFs in more detail [6]. In this study, 36 of 37 isolates showed 2 subtypes and one was a different form according to *esp* repeat profile analysis (Table 2). It is thought that genetically similar VREs are prevalent in this study.

The genetic background of quinolone resistant *E. faecium* and its relation with CC17 were proved in Holland in 2005 [13]. MLST revealed that most of isolates belonged to CC17 and consequently investigation on CC17 as possible genetic aberrations causing quinolone resistance was made. All 37 isolates showed genetic mutations in *parC* and *gyrA*. In case of *parC*, Ser80→Arg or Ser80→IIe were found. In case of *gyrA*, Ser83→ Arg or Ser83→IIe mutations were found. 97% of those isolates showed ciprofloxacin resistance according to antibiotic susceptibility testing. Ser80→Arg mutation of *parC* and Ser83→Arg mutation of *gyrA* were most commonly found in 17 of 37 isolates (45.9%), and these mutations are known as most frequently observed mutations in QRDR [13].

In this study, VanB-phenotype *vanA* genotype VRE (32.4%) as well as VanA-phenotype *vanA* genotype VRE (67.6%) were relatively common. In addition, epidemiologic study confirmed that CC17 known to be spreading in the world was also widely prevalent in this study. ST 414 and CNS4 (4-1-1-1-1-1-1) Which were not detected in Korea before were also notable findings. This study also found the relations between *hyl* gene and CC17 for the first time in Korea.

Control of VREF organisms and its epidemiologic study are thought to be important issues because CC17 seems to be naturalized in hospital settings. In this regards, identification of *esp* and *hyl* gene and MLST can be very useful for early detection of CC17 and other sequences for subsequent prevention of its naturalization.

REFERENCES

- Song JY, Hwang IS, Eom JS, Cheong HJ, Bae WK, Park YH, et al. Prevalence and molecular epidemiology of vancomycin-resistant enterococci (VRE) strains isolated from animals and humans in Korea. Korean J Intern Med 2005;20:55-62.
- Choi YH, Lee YS, Lee JK, Yoo JL, Kim CK, Kim BS. Molecular relationship of *vanA* glycopeptide resistance gene in enterococci from hospitalized patients and poultry in Korea. Korean J Infect Dis 2001;33:383-91.
- Choi WS, Seo YB, Jo YM, Kim JY, Kee SY, Jeong HW, et al. Epidemiology and clinical significance of bacteriuria caused by vancomycin-resistant enterococci. Infect Chemother 2006;38:242-9.
- Willems RJ, Top J, van Santen M, Robinson DA, Coque TM, Baquero F, et al. Global spread of vancomycin-resistant *Enterococcus faecium* from distinct nosocomial genetic complex. Emerg Infect Dis 2005;11:821-8.
- Top J, Willems R, van der Velden S, Asbroek M, Bonten M. Emergence of clonal complex 17 *Enterococcus faecium* in the Netherlands. J Clin Microbiol 2008;46:214-9.
- Ko KS, Baek JY, Lee JY, Oh WS, Peck KR, Lee N, et al. Molecular characterization of vancomycin-resistant *Enterococcus faecium* isolates from Korea. J Clin Microbiol 2005;43:2303-6.
- Lee WG, Lee SM, Kim YS. Molecular characterization of *Enterococcus faecium* isolated from hospitalized patients in Korea. Lett Appl Microbiol 2006;43:274-9.
- 8 Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; eighteenth informational supplement. M100-S18 (M2). Wayne, PA: Clinical and Laboratory Standards Institute, 2008.
- Ribeiro T, Abrantes M, Lopes Mde F, Crespo MT. Vancomycinsusceptible dairy and clinical enterococcal isolates carry vanA and vanB genes. Int J Food Microbiol 2007;113:289-95.
- Homan WL, Tribe D, Poznanski S, Li M, Hogg G, Spalburg E, et al. Multilocus sequence typing scheme for *Enterococcus faecium*. J Clin Microbiol 2002;40:1963-71.
- 11. Khan MA, van der Wal M, Farrell DJ, Cossins L, van Belkum A, Alaidan A, et al. Analysis of VanA vancomycin-resistant *Enterococcus faecium* isolates from Saudi Arabian hospitals reveals the presence of clonal cluster 17 and two new Tn1546 lineage types. J Antimicrob Chemother 2008;62:279-83.

- Leavis H, Top J, Shankar N, Borgen K, Bonten M, van Embden J, et al. A novel putative enterococcal pathogenicity island linked to the *esp* virulence gene of *Enterococcus faecium* and associated with epidemicity. J Bacteriol 2004;186:672-82.
- Leavis HL, Willems RJ, Top J, Bonten MJ. High-level ciprofloxacin resistance from point mutations in gyrA and parC confined to global hospital-adapted clonal lineage CC17 of *Enterococcus* faecium. J Clin Microbiol 2006;44:1059-64.
- 14. Eom JS, Hwang IS, Hwang BY, Lee JG, Lee YJ, Cheong HJ, et al. Emergence of *vanA* genotype vancomycin-resistant enterococci with low or moderate levels of teicoplanin resistance in Korea. J Clin Microbiol 2004;42:1785-6.
- Arthur M and Courvalin P. Genetics and mechanisms of glycopeptide resistance in enterococci. Antimicrob Agents Chemother 1993; 37:1563-71.
- Reynolds PE and Courvalin P. Vancomycin resistance in enterococci due to synthesis of precursors terminating in D-alanyl-Dserine. Antimicrob Agents Chemother 2005;49:21-5.
- Lee WG, Huh JY, Cho SR, Lim YA. Reduction in glycopeptide resistance in vancomycin-resistant enterococci as a result of *vanA* cluster rearrangements. Antimicrob Agents Chemother 2004;48: 1379-81.
- Oh JY, Her SH, Seol SY, Lee YC, Lee JC, Kim JM, et al. Antimicrobial resistance and multilocus sequence typing of vancomycin-resistant *Enterococcus faecium* isolated from clinical specimens. J Bacteriol Virol 2008;38:19-27.
- MLST. MLST web sites. *Enterococcus faecium* MLST database. http://efaecium.mlst.net/[online] (last visited on 10 May 2010)
- 20. Peta M, Carretto E, Barbarini D, Zamperoni A, Carnevale L, Perversi L, et al. Outbreak of vancomycin-resistant *Enterococcus*

spp. in an Italian general intensive care unit. Clin Microbiol Infect 2006;12:163-9.

- Shankar V, Baghdayan AS, Huycke MM, Lindahl G, Gilmore MS. Infection-derived *Enterococcus faecalis* strains are enriched in *esp*, a gene encoding a novel surface protein. Infect Immun 1999; 67:193-200.
- Toledo-Arana A, Valle J, Solano C, Arrizubieta MJ, Cucarella C, Lamata M, et al. The enterococcal surface protein, Esp, is involved in *Enterococcus faecalis* biofilm formation. Appl Environ Microbiol 2001;67:4538-45.
- Oancea C, Klare I, Witte W, Werner G. Conjugative transfer of the virulence gene, *esp*, among isolates of *Enterococcus faecium* and *Enterococcus faecalis*. J Antimicrob Chemother 2004;54:232-5.
- 24. Freitas AR, Tedim AP, Novais C, Ruiz-Garbajosa P, Werner G, Laverde-Gomez JA, et al. Global spread of the *hyl* (Efm) colonization-virulence gene in megaplasmids of the *Enterococcus faecium* CC17 polyclonal subcluster. Antimicrob Agents Chemother 2010;54:2660-5.
- Panesso D, Reyes J, Rincón S, Díaz L, Galloway-Peña J, Zurita J, et al. Molecular epidemiology of vancomycin-resistant *Enterococcus faecium*: a prospective, multicenter study in South American hospitals. J Clin Microbiol 2010;48:1562-9.
- Rice LB, Carias L, Rudin S, Vael C, Goossens H, Konstabel C, et al. A potential virulence gene, *hyl*Efm, predominates in *Enterococcus faecium* of clinical origin. J Infect Dis 2003;187:508-12.
- Camargo IL, Gilmore MS, Darini AL. Multilocus sequence typing and analysis of putative virulence factors in vancomycin-resistant and vancomycin-sensitive *Enterococcus faecium* isolates from Brazil. Clin Microbiol Infect 2006;12:1123-30.

=국문초록=

충청지역에서 분리된 Vancomycin 내성 Enterococcus faecium의 항균제 내성과 Multilocus Sequence Type 분석

¹충남대학교 의과대학 진단검사의학교실, ²극동대학교 임상병리학과 조혜현¹, 성지연², 권계철¹, 임진숙¹, 구선회¹

배경: 장알균은 전 세계적으로 출현하고 있는 중요한 병원균으로, 특히 Clonal Complex 17 (CC17)이 유행하고 있는 실정 이다. 본 연구에서는 충청지역에서 분리된 vancomycin 내성 장알균의 항균제 내성 양상과 분자역학적인 성상에 대하여 알아보고자 하였다.

방법: 2009년 9월부터 12월까지 충청지역의 3개 의과대학병원 진단검사의학과에 의뢰된 임상검체에서 분리된 장알균 중 vancomycin에 내성을 보인 37주를 대상으로 하였다. VRE의 유전형 분석과 병독성 인자의 검출을 위하여 PCR을 시행 하였고, 균주 간의 분자역학적인 관계를 알아보기 위해 MLST와 *esp* repeat profile을 통하여 분석하였다. 또한 염색체상의 QRDR에 존재하는 유전자인 *parC*와 *gyrA*의 유전자 변이를 조사하기 위해 염기서열 분석을 수행하였다.

결과: 항균제 감수성 양상과 VRE 유전형 확인 결과, VanA-표현형 vanA 유전형 VRE가 25주, VanB-표현형 vanA 유전형 VRE가 12주였다. MLST 분석에서는 5개의 ST를 확인하였다. 이 중 ST414와 CNS4 (4-1-1-1-1-1)는 국내에서 처음으로 발견되었는데, CC17에 속하는 것을 확인하였다. *Esp와 hyl* 유전자의 검출은 PCR 결과, 각각 100%와 86.5%로 양성반응을 보였고, *parC와 gyrA*에서의 유전적 변이는 37주 모두 가지고 있었다.

결론: ST414 및 CNS4 (4-1-1-1-1-1)를 포함하여 본 연구에서 분리된 모든 균주가 CC17에 속하는 것을 확인하였다. CC17 은 전 세계적으로 토착화되려는 양상을 보이고 있는데, 이러한 확산을 방지하기 위하여 MLST와 *esp* repeat profile 분석은 장알균의 유전적 특성뿐만 아니라, 분리된 균주의 진화 과정 및 역학적 관계를 규명하는데 유용하게 사용될 수 있다. [대한임상미생물학회지 2011;14:60-66]

교신저자 : 구선회, 301-721, 대전시 중구 대사동 640 충남대학교병원 진단검사의학과 Tel: 042-280-7798, Fax: 042-257-5365 E-mail: shkoo@cnu.ac.kr