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Abstract
Purpose: Candidemia is a common cause of nosocomial bloodstream infections associated 
with high mortality rates. Its incidence varies significantly across countries and hospitals, 
and its epidemiology is a subject of continuous investigation. This review aims to provide 
a comprehensive analysis of candidemia in Korea, addressing its changing epidemiology, 
species distribution, antifungal resistance, and clinical implications.
Current content: In Korea, Candida albicans remains the most common isolate in blood 
cultures; however, infections caused by non-albicans Candida species are increasing. The 30-
day mortality rates for patients with candidemia vary considerably across different Candida 
species, with Candida tropicalis at 47.0%, C. albicans at 36.4%, Candida glabrata at 34.7%, 
and Candida parapsilosis at 22.5%. Recent Korean studies have highlighted the clonal spread 
of bloodstream infections caused by C. parapsilosis with the Erg11p Y132F mutation, and 
certain isolates are becoming endemic to specific healthcare settings. C. glabrata poses 
a significant threat; this species is increasingly resistant to antifungal medications and 
multidrug-resistant isolates are emerging. Whole-genome sequencing analysis elucidates 
the transmission dynamics of clonal bloodstream isolates of C. glabrata among patients 
receiving antifungal therapy. This analysis demonstrates varying degrees of fluconazole 
susceptibility and distinct Pdr1p mutation profiles, identifying the molecular mechanisms 
underlying multidrug resistance. Furthermore, the first nosocomial outbreak of Candida auris 
underscores the importance of multicenter surveillance for identifying and managing C. auris 
outbreaks.
Conclusion: The changing epidemiology of candidemia, along with the continued 
emergence of antifungal resistance among bloodstream isolates of non-albicans Candida 
species warrants continuous monitoring of candidemia in Korea. By integrating clinical, 
microbiological, and public health perspectives, healthcare systems can develop robust 
strategies to optimize therapeutic approaches, prevent nosocomial transmission, and 
ultimately reduce morbidity and mortality associated with these life-threatening infections.
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Introduction

Background
The worldwide prevalence of fungal diseases has significantly increased in recent years. Data from more 

than 120 countries collected between 2010 and 2023 revealed that there are approximately 6.5 million life-

threatening fungal infections annually, with 2.5 million fatalities, which is a disease burden similar to that 

of tuberculosis, the world’s leading infectious disease [1]. Many fungi cause clinical diseases, Candida and 

Aspergillus species being the most life threatening [1,2]. Globally, approximately 1,565,000 individuals are 

affected by candidemia or invasive candidiasis each year, with 995,000 deaths (63.6%) [1]. Candidemia 

affects at least 600,000 individuals annually, with mortality rates ranging from 30% to 40%, even in high-

income countries [2]. Although candidemia is the most common form of invasive candidiasis, culture-

negative deep-tissue infections after hematogenous seeding have also been reported [3]. Of the 10,758 Korea 

Global Antimicrobial Resistance Surveillance System (Kor-GLASS) bloodstream infection (BSI) pathogens 

identified in 2020–2021, Candida species ranked fourth among all BSI pathogens, followed by Escherichia 

coli, Klebsiella pneumoniae, and Staphylococcus aureus. Furthermore, among hospital-origin pathogens, 

Candida species ranked second, following E. coli. These findings highlight the significant contribution of 

Candida species in regard to nosocomial BSIs in South Korea [4].

The epidemiology of candidemia has changed over the past few decades. Candida albicans remains the 

most common isolate in blood cultures; however, infections caused by non-albicans Candida (NAC) species 

are increasing. The emergence of azole-resistant Candida parapsilosis, multidrug-resistant (MDR) Candida 

glabrata and Candida auris poses significant global public health challenges [5,6]. In October 2022, the World 

Health Organization released an initial fungal priority pathogen list that classified 19 fungal species into 

critical, high, and medium categories, suggesting research priorities [2]. C. auris and C. albicans are of critical 

concern, while C. glabrata, Candida tropicalis, and C. parapsilosis are of high concern [2]. Candida species 

differ in their virulence, antifungal susceptibility, and clinical profiles, which must be thoroughly understood 

if the disease is to be effectively managed [4,7,8].

Objectives
This review presents an overview of the current epidemiology, antifungal resistance, and clinical 

implications of Candida species as the primary agents responsible for candidemia. It thoroughly examines 

recent research conducted in Korea to clarify the reasons for the rising incidence of antifungal drug-resistant 

pathogens contributing to candidemia in hospitals nationwide. It aims to comprehensively analyze the 

molecular mechanisms and clinical implications of antifungal resistance in Candida bloodstream isolates, 

considering the evolving epidemiology of candidemia. We focus on species distribution, antifungal resistance 

patterns, and clinical outcomes, especially in intensive care units, to identify mechanisms that could improve 

therapeutic and preventive strategies.
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Species distribution and candidemia mortality
Over 90% of all global candidemia episodes are caused by C. albicans, C. glabrata, C. tropicalis, and 

C. parapsilosis [4,8,9]. C. albicans is predominant species responsible for candidemia worldwide; however, 

significant variations exist in the incidence of cases attributed to NAC [4,7,8]. C. glabrata infections are 

common in both Northern Europe and the United States. In Spain and Brazil, C. parapsilosis infections are 

more frequent [7]. Early multicenter investigations in South Korea identified C. parapsilosis as the NAC 

most frequently isolated from candidemia patients [10-12]. However, from 2020 to 2021, C. tropicalis (17.6%) 

and C. glabrata (17.4%) will be the most common NACs in South Korea [4,8,10-14] (Fig. 1). Similar shifts 

in the species distribution have been reported in other Korean report [8]. A recent Korean report found that 

87.6% of Candida BSI isolates were of hospital origin, and 41.3% were from patients in intensive care units 

(ICUs) [4]. Adults aged > 60 years accounted for 75.7% of all cases [4]. Candidemia predominantly affects 

those aged > 60 years; C. glabrata BSIs are most common in the elderly (> 70 years) and C. parapsilosis 

candidemia is more common in males [4]. The factors driving the evolving epidemiology of NAC in South 

Korea remain unclear, although certain antifungal medications, infection control measures, and risk profiles 

of hospitalized patients may play a role [8,9].

A Korean multicenter study evaluated 807 cases of candidemia reported by 11 hospitals in 2017 and 2018. 

The overall crude 30-day mortality rate was 36.4%. The 30-day mortality rates of patients with candidemia 

due to C. tropicalis, C. albicans, C. glabrata, and C. parapsilosis were found to be 47.0%, 36.4%, 34.7%, 

and 22.5%, respectively. Notably, the 30-day mortality rate of ICU-acquired candidemia (ICUAC) was 

significantly higher than that of non-ICUAC patients (49.5% vs. 25.4 %) for all species (C. albicans, 47.6% 

vs. 27.7%; C. tropicalis, 57.8% vs. 33.3%; C. glabrata, 50.0% vs. 24.7%; C. parapsilosis, 36.7% vs. 11.3%) 

[8]. ICU admission was an independent predictor of mortality associated with C. glabrata [odds ratio (OR), 

2.07–2.48] and C. parapsilosis (OR, 6.06–11.54) candidemia. Fluconazole resistance predicted C. glabrata-

associated mortality (OR, 2.80–5.14). An antifungal therapy delay of > 3 days was the strongest predictor 

of 7-day mortality which was attributable to ICUAC caused by C. albicans (OR, 18.33), C. tropicalis (OR, 

10.52), and C. glabrata (OR, 21.30) but was less strongly linked to 30- and 90-day mortality rates (OR, 

2.72–6.90). Mortality attributable to C. glabrata ICUAC was found to be more strongly correlated with the 

absence of antifungal therapy (55.2%) than that attributed to ICUAC caused by other species (30.6%–36.7%). 

As ICUAC mortality rates and predictors of mortality differ significantly from those in patients with non-

ICUAC [8], continuous epidemiological surveillance is essential to detect any shift in species distribution and 

antifungal resistance among Candida BSIs in ICU patients.
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Antifungal resistance
The global rise in antifungal-resistant Candida species is particularly concerning, but the rates of 

resistance to both azoles and echinocandins vary by geographic region, hospital, and ICU. According to 

the 1997–2016 SENTRY Antimicrobial Surveillance Program, fluconazole resistance in C. glabrata is 

the highest in North America (10.6%), whereas resistance in C. tropicalis is the highest in the Asia-Pacific 

region (9.2%) [9]. The prevalence and fluconazole resistance of C. glabrata have increased steadily over 

the past 20 years in the United States. The echinocandin resistance rates ranged from 3.5% for C. glabrata 

to 0.1% for C. albicans and C. parapsilosis [9]. The 2019–2020 SENTRY Antimicrobial Surveillance 

Program reported that 0.5%, 4.5%, 10.5%, and 1.2% of all C. albicans, C. glabrata, C. parapsilosis, and C. 

tropicalis, respectively, were fluconazole-resistant [15]; among the NAC species, azole resistance was found 

to be increasing. All C. albicans, C. tropicalis, and Candida krusei isolates, and most C. glabrata (96.2%–

97.9%) and C. parapsilosis (86.2%–100%) isolates were susceptible to echinocandins [15]. Antifungal 

resistance rates in bloodstream isolates of the four Candida species from 2005 to 2021 in Korea showed 

relatively higher fluconazole resistance rates in C. glabrata and C. parapsilosis without consistent trends, 

whereas echinocandin-resistant isolates were rarely observed (Fig. 2). [4,8,10-14]. The Candida data of Kor-

GLASS obtained from nine sentinel hospitals between 2020 and 2021 revealed that 21.1%, 4.0%, 0.1%, 0.0%, 

and 0.1% of all Candida isolates in BSIs were not susceptible to fluconazole, voriconazole, caspofungin, 

micafungin, and anidulafungin, respectively [4]. Fluconazole resistance was apparent in 0% (0/348), 2.2% 

(3/135), 5.3% (7/133), and 5.6% (6/108) of the C. albicans, C. tropicalis, C. glabrata, and C. parapsilosis 

BSIs, respectively [4]. The mechanisms of azole antifungal resistance in major Candida species, as identified 

in Korean multicenter studies, vary among the species (Table 1) [16-20]. Erg11p and Tac1p amino acid 

substitutions (AASs) may play significant roles in regard to the development of antifungal resistance in C. 

albicans strains infecting the bloodstream. Most fluconazole-non-susceptible (FNS) infections are not linked 

Fig. 1. Species distribution of the Candida bloodstream infection isolates from Korean hospitals.
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to prior azole exposure [16]. In contrast, most FNS C. tropicalis isolates overexpress CDR1, MDR1, and 

ERG11, and fungemia typically follows azole treatment in immunocompromised patients [17].

Fig. 2. Antifungal resistance of the Candida bloodstream infection isolates from Korean hospitals using 
new clinical breakpoints (CLSI M60-ED2:2020) [36].

Table 1. Studies describing the azole antifungal resistance mechanisms in the Candida isolates collected from Korean multicenter studies.
Candida species C. albicans C. tropicalis C. parapsilosis C. glabrata C. auris
Collection period of isolates 2006–2021 2003–2013 2005–2016 2008–2018 1996–2022
Number of hospitals 10 8 8 19 13
Number of isolates 26 BSI

(14 FNS and 12 FS) 
isolates

9 FNS, 12 FS
(MIC, 1–2 μg/ml),

and 14 control
(MIC, 0.125–0.5 μg/ml) 

isolates

67 BSI
(47 FR and 20 FS) 

isolates

278 BSI
(66 FR and 212 F-SDD) 

isolates

104
(96 clade II and 8 clade I) 

isolates

Genes studied Sequencing of ERG11, 
TAC1, MRR1, and 

UPC2

Quantitation of 
CDR1, MDR1, and 
ERG11 expression, 

and sequencing of the 
ERG11 and UPC2 

genes

Sequencing of ERG11, 
TAC1, MRR1, and 

UPC2

Sequencing of 
pleiotropic drug 

resistance transcription 
factor (PDR1)

Sequencing of ERG11, 
TAC1A, and TAC1B

Results Erg11p and Tac1p AASs 
are likely to contribute 

to FR in C. albicans BSI 
isolates in Korea

The majority of FNS 
C. tropicalis isolates 
show overexpression 
of CDR1, MDR1, and 

ERG11 genes

Majority (63.8%) of 
the C. parapsilosis FR 

isolates exhibit the 
Y132F substitution in 

Erg11p

Most FR BSI isolates 
of C. glabrata in Korea 

harbor FR-specific 
Pdr1p AAS

Tac1Bp AASs may be the 
predominant fluconazole 
resistance mechanism in 
clade II Korean isolates of 

C. auris
Year of publication 2023 2016 2018 2021 2023
References [16] [17] [18] [19] [20]
Abbreviations: BSI, bloodstream infection; FNS, fluconazole non-susceptible; FS, fluconazole susceptible; F-SDD, fluconazole susceptible dose-dependent; 
FR, fluconazole resistant; MIC, minimal inhibitory concentration; AAS, amino acid substitution.
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Pathophysiology
Candida species, predominantly C. albicans and C. tropicalis (with lower proportions of C. parapsilosis and 

C. glabrata), are integral components of the normal gastrointestinal microbiome [21]. Most candidemia cases 

are endogenous infections, C. albicans (which constitutes 70%–80% of commensal Candida) is the most 

common causative agent [22]. The main mechanism of candidemia is thought to be the leakage of Candida 

through the intestinal mucosa following mucosal insults [23], such as those caused by abdominal surgery, 

anastomotic leaks, antibiotic use, and pancreatitis. In addition, Candida often gains bloodstream access via 

intravenous catheters, particularly in central venous lines. In patients receiving total parenteral nutrition (TPN), 

lipid emulsions enhance Candida biofilm formation, potentially increasing its virulence. Altered gut function 

in TPN recipients may also be conducive for Candida translocation [24]. Many molecular typing studies 

have shown that small clusters of candidemia attributable to isogenic isolates are frequent within hospitals, 

Candida can spread nosocomially [18,25,26] via the hands of healthcare personnel or contamination of 

intravenous saline used to flush central venous catheters (CVCs) shared among patients. In addition, person-

to-person transmission among hospitalized patients may have occurred more frequently than previously 

thought. The clonal spread of C. albicans causing candidemia is common in hospitals [25,26]. Outbreaks 

of C. albicans often occur over a short period and simultaneously involve multiple patients. In contrast, C. 

parapsilosis is more persistent in healthcare settings, with clusters of infected patients developing over time 

[27], likely due to its frequent presence on the hands of healthy individuals and healthcare workers [6].  Strict 

adherence to routine hand hygiene and the appropriate management of CVCs are of utmost importance 

[6].  “Catheter care bundles,” which are standardized interventions that prevent catheter-associated BSIs, 

significantly decrease the incidence of candidemia [6].  

Epidemiology, antifungal resistance and clinical 
significance of the most concerning Candida species

1) Candida parapsilosis
C. parapsilosis is the second most common cause of Candida BSIs in Latin America, Asia, and Southern 

Europe, and the third most common global BSI cause [5,28]. C. parapsilosis candidemia is frequently 

attributed to external fungal acquisition; C. parapsilosis tends to colonize hospital settings and equipment, 

particularly CVCs and other medical devices [29]. One Korean study explored whether biofilm formation 

was associated with clinical features [30]. The proportion of blood NAC isolates that formed biofilms was 

significantly higher than that of NAC isolates from other locations (79% vs. 52%). Specifically, bloodstream 

isolates of C. parapsilosis demonstrated a significantly higher likelihood of being biofilm positive than those 

obtained from other sites (86% vs. 47%). All NAC species, including C. parapsilosis, were more likely to 

form biofilms when isolated from patients with CVC-related candidemia associated with TPN than from 

other patients. The ability of in vitro biofilm formation in C. parapsilosis when grown in glucose-containing 
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Sabouraud dextrose broth is an important virulence factor that causes CVC-related fungemia in patients 

treated with TPN [30].

Although C. parapsilosis is usually susceptible to azole antifungals, C. parapsilosis BSIs caused by 

FNS isolates have become increasingly common worldwide [5,26]. The global prevalence of fluconazole 

resistance ranges from 0% to 100%, and the pooled resistance rate may reach 15.2% [31]. Recent reports 

indicated that 60.7%-63.8% FNS C. parapsilosis isolates harbored a Y132F substitution in the ERG11 gene 

(“Y132F isolates”), and most were clonally related. BSI outbreaks caused by Y132F isolates have been 

reported in multiple countries across four continents, and some clonal isolates have become endemic over 

several years in affected hospitals [18,32]. An early multicenter Korean report found that among 1,009 non-

duplicated BSIs of C. parapsilosis obtained from 20 hospitals between 2005 and 2016, 47 (4.7%) from 

eight university hospitals were fluconazole resistant and 64% (30/47) harbored the same Y132F mutation in 

Erg11p [18].

A recent Korean study found that long-term clonal transmission of C. parapsilosis BSI Y132F isolates in 

Korean hospitals was associated with a “sinking” (not a “floating”) phenotype [33]. In contrast to floating 

phenotypes, sinking phenotypes are presented as a smaller, button-like appearance in the plate well of 

Clinical and Laboratory Standards Institute broth microdilution antifungal susceptibility test; all cells sank in 

U-shaped, round-bottom wells. The sinking phenotype was detected in 86.7% of the FNS BSI isolates, and 

92.9% of the Y132F BSI isolates of C. parapsilosis. As azole breakthrough fungemia, ICU admission, and 

urinary catheter use were independent risk factors for fungemia caused by Y132F sinking phenotype isolates, 

strain with a sinking phenotype may be prone to having an ERG11 Y132F substitution after azole exposure, 

may be more enriched, and may persist for a long time in the ICU environment, where they may cause BSI 

in vulnerable patients with indwelling catheters or azole exposure [33]. Microsatellite typing revealed that 

these isolates exhibited greater clonal transmission than other fluconazole-resistant isolates and persisted in 

hospitals for several years. The evolution of fluconazole resistance in Y132F clonal C. parapsilosis isolates 

from a South Korean hospital has been studied [34]. Increased fluconazole resistance has been associated 

with the acquisition of MRR1 mutations. Thus, continuous surveillance of fluconazole resistance rates, 

resistance mechanism(s), and clonality of hospital C. parapsilosis isolates is essential [33,34].

2) Candida glabrata
C. glabrata is one of the most concerning Candida species of nosocomial importance; its antifungal drug 

resistance rate is increasing, and MDR isolates are emerging [4,9,35]. C. glabrata is innately relatively 

resistant to azoles, especially fluconazole, and can rapidly develop fluconazole resistance during treatment, 

probably because its haploid genome is mutable. C. glabrata isolates are no longer considered fluconazole-

susceptible but rather fluconazole-susceptible dose-dependent (F-SDD) or fluconazole-resistant [35,36]. 

Although the incidences of echinocandin-resistant and MDR C. glabrata BSIs are low, fluconazole-resistant C. 

glabrata BSIs have been increasingly reported worldwide, typically at a rate of 2.6%–10.6% but increasing 

up to 17% [9].
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Gain-of-function (GOF) mutations in the transcription factor pleiotropic drug resistance protein 1 (encoded 

by PDR1) mediate C. glabrata azole resistance by controlling the expression of genes encoding efflux pumps 

[CDR1, CDR2 (PDH1), and SNQ2], although other mechanisms may also be involved [37]. A Korean 

multicenter study found that 98.5% of fluconazole-resistant C. glabrata BSIs and 0.9% of C. glabrata F-SDD 

BSIs exhibited one or two AASs in the Pdr1p protein, excluding five genotype-specific AASs [19]. Of the 

49 Pdr1p AASs, 33 were found to be new; most fluconazole-resistant BSIs harbored fluconazole resistance-

specific Pdr1p AASs. More importantly, patients infected with fluconazole-resistant C. glabrata BSIs 

harboring Pdr1p mutations exhibited high mortality; the 30-day rate for 64 patients was 60.9%, and the 90-

day rate was 78.2%, which was significantly higher than that for patients with F-SDD BSIs (30-day rate, 

36.4%; 90-day rate, 43.8%) [19].

The echinocandin resistance rate of C. glabrata ranged from 1.7% to 3.5% and resistance did not increase 

over time [9,38]. However, at the institutional level, the prevalence of echinocandin resistance varies 

significantly, and sometimes exceeds 13% [9,38]. A recent Korean study used whole-genome sequencing 

(WGS) in order to explore the molecular mechanisms of MDR in 10 serial C. glabrata isolates from a patient 

with BSI experiencing breakthrough fungemia during extended amphotericin B (AMB)/echinocandin 

therapy [39]. ERG3 and ERG6 may be involved in AMB resistance, and Fks2p mutations outside the high-

susceptibility regions contribute to low echinocandin resistance [39]. The minimal inhibitory concentration 

(MIC) of fluconazole for C. glabrata isolates with the same Pdr1p GOF mutation was reduced in AMB-

resistant isolates with Erg6p mutations, indicating a complex relationship between AMB and azole resistance. 

Changes in the ergosterol biosynthesis pathway may explain the azole resistance in some C. glabrata strains 

[39].

Although C. glabrata transmission within hospitals is less common than that of other Candida species, 

some transmission has been observed [40,41]. The prevalence of antifungal-resistant BSIs caused by C. 

glabrata is increasing worldwide [5,9,19], but the transmission of such resistant strains within hospitals 

has rarely been reported. However, the Centers for Disease Control and Prevention’s Emerging Infections 

Program in USA found an exceptionally high proportion of echinocandin-resistant C. glabrata with 

the FKS mutations seen among echinocandin-naïve patients, suggesting nosocomial transmission [42]. Using 

WGS and epidemiological analyses, a recent Korean study identified two potential clusters of C. glabrata 

BSIs within the same hospital. Clonal C. glabrata strains with differences in fluconazole susceptibility and 

distinct Pdr1p AAS profiles were isolated from patients receiving antifungal therapy [43].

3) Candida auris
C. auris poses a significant threat to global health [2,44]. C. auris was first described in Japan and South 

Korea in 2009 [45,46]. The first Japanese C. auris was isolated from an inpatient’s external ear canal [45]. In 

the same year, Candida haemulonii and other closely related species from five Korean university hospitals 

were reported [46]. Of these, 15 ear isolates of the new Candida species were identified as C. auris; all from 

patients with chronic otitis media. Persistently positive cultures were obtained from seven patients, three 

of whom received antifungal therapy. However, no histopathological evidence of a fungal infection was 
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observed in any patient. Thus, the clinical significance of C. auris isolation from the ears remains unclear. 

Two years later, the first three cases of C. auris fungemia were identified at three Korean university hospitals 

[47]. The first case was incidentally discovered through molecular analysis of an unidentified yeast isolated in 

1996; the earliest strain of C. auris was thus from Korea. Two of these three cases were identified in the 2009 

Korean multicenter candidemia surveillance study. These three cases show, for the first time, that C. auris is 

a human pathogen. Since then, C. auris has been found in more than 45 countries across six continents [48] 

and has been associated with many outbreaks of invasive diseases. The mortality rate ranged from 29% to 

62%, and the median hospital stay was typically 46–68 days but reached up to 140 days [49].

C. auris differs from other Candida species in three respects [50]. First, C. auris is primarily associated with 

the skin and not the gut or mucosal surfaces. Second, because C. auris can persist on the skin, it can spread 

widely in healthcare environments, affecting both patients and the environment, and hospital outbreaks are 

frequent. Third, C. auris is the first nosocomial fungal pathogen to exhibit marked (sometimes complete) 

resistance to all known antifungals, including azoles, AMB, and echinocandins. The global fluconazole 

resistance rate was 87%–100%. The MIC90 of isavuconazole, itraconazole, and posaconazole are 0.06–1.0 

mg/L. The voriconazole resistance rate was 28%–98%. The AMB resistance rate is 8%–35% and that of 

echinocandin resistance is 0%–8% [49].

In the initial WGS analysis, C. auris isolates were grouped into four major clades: South Asia clade I, East 

Asia clade II, African clade III, and South American clade IV [51]. Only clade II isolates were detected in 

Korean hospitals between 1996 and 2018 [52]. Pulsed-field gel electrophoresis showed that the patterns of 

the Korean blood and ear isolates were similar or identical and distinct from those of other countries. Almost 

all Korean isolates were obtained from ears. No nosocomial outbreaks caused by clade II C. auris have yet 

been reported. Two Korean studies found that 66% of 157 isolates of clade II C. auris were fluconazole-

resistant, but all were susceptible to AMB and the three echinocandins, and MDR was not found [20,52]. 

Thus, clade II Korean isolates of C. auris are less resistant to antifungals and differ in terms of clinical 

characteristics compared to other geographic clades [52]. In 2022, Kor-GLASS identified nine C. auris clade 

I BSIs in a single hospital [20]. This is the first nosocomial outbreak in Korea, highlighting the importance 

of multicenter surveillance for identifying and managing C. auris outbreaks. Clade II Korean isolates were 

less tolerant to 42°C than clade I isolates. Furthermore, in a model using Galleria mellonella larvae, the clade 

II isolates were less virulent than the clade I isolates [20]. The growth rate of clade II isolates was fivefold 

lower than that of C. albicans SC5314, but the clade I growth rate was 4.3-fold higher than that of C. albicans. 

The low virulence of clade II may explain its lack of nosocomial transmission [20]. A detailed summary of 

microbiological studies on the clinical isolates of C. auris in Korea is provided in Table 2. Infections caused 

by C. auris have been documented in at least 40 countries across six continents. Although clade II C. auris 

lacks MDR and does not appear to cause nosocomial candidemia, the increasing incidence of clade I C. auris 

infections in Korea is alarming. The timely identification and implementation of effective control measures 

are critical.
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Table 2. Summary of the microbiological studies of the clinical isolates of Candida auris in Korea
Year of
publication

No. of patient
(No. of isolate)

Specimen 
(No. of isolate)

Molecular epidemiologic test 
(No. of isolate)a

Resistance rate of antifungal agent (%)b

Possible genetic marker of FLU resistant isolate Reference
FLU AMB CSF MCF ANF

2009 015 (15) 00Ear (15) NT 53.3 0 0 0 NT NT [46]
2011 003 (6) Blood (6) NT 33.3 0 0 0 NT NT [44]
2018 061 (61) Blood (4),

00Ear (57)
Clade II (61) 62.3 0 0 0 NT Erg11p (L43H, K143R, Q357K) [52]

2023 104 (104) Blood (5),
00Ear (91)

Clade I (8) 25.0 75.0 0 0 0 Erg11p (K143R), Tac1Bp (A640V) [20]

Clade II (96) 68.8 0 0 0 0 Erg11p (L43H, Y132F, K143R, Q357K), 
Tac1Bp (F214S, P595L)

aClade of isolates were determined by multilocus sequence typing.
bApplying tentative breakpoints of the Centers for Disease Control and Prevention.
Abbreviations: FLU, fluconazole;  AMB, amphotericin B; CSF, Caspofungin; MCF, micafungin; ANF, anidulafungin; NT, not tested.

Conclusion
Candidemia, the epidemiology of which differs geographically, remains an important issue. The global 

landscape has evolved over time and is likely influenced by selective drug pressure, innate characteristics of 

Candida species, and host- and drug-related parameters. Increasing antifungal resistance, particularly in azole-

resistant C. parapsilosis, MDR C. glabrata and C. auris, complicates treatment strategies and is associated 

with an increasing incidence of candidemia in healthcare settings. The interrelationships between virulence, 

epidemiology, and antifungal susceptibility/resistance must be understood if management is effective. 

Because person-to-person transmission among hospitalized patients may be more frequent than previously 

recognized, adherence to established infection prevention protocols is imperative. WGS will yield insights 

into drug resistance mechanisms, virulence factors, genotypic characteristics, and sources of infection. Given 

the link between antifungal resistance in Candida isolates and their evolutionary adaptations, it is vital to 

sustain the ongoing multicenter surveillance of antifungal resistance rates, the underlying mechanisms of 

resistance, and also the clonal relationships of Candida isolates sourced from healthcare settings.
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